Exploiting Monotone Convergence Functions in Parallel Programs Exploiting Monotone Convergence Functions in Parallel Programs
نویسندگان
چکیده
Scientiic codes which use iterative methods are often diicult to parallelize well. Such codes usually contain while loops which iterate until they converge upon the solution. Problems arise since the number of iterations cannot be determined at compile time, and tests for termination usually require a global reduction and an associated barrier. We present a method which allows us avoid performing global barriers and exploit pipelined parallelism when processors can detect non-convergence from local information. Abstract. Scientiic codes which use iterative methods are often dii-cult to parallelize well. Such codes usually contain while loops which iterate until they converge upon the solution. Problems arise since the number of iterations cannot be determined at compile time, and tests for termination usually require a global reduction and an associated barrier. We present a method which allows us avoid performing global barriers and exploit pipelined parallelism when processors can detect non-convergence from local information.
منابع مشابه
ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملEstimation of Monotone Functions via P-Splines: A Constrained Dynamical Optimization Approach
Estimation of monotone functions has broad applications in statistics, engineering, and science. This paper addresses asymptotic behaviors of monotone penalized spline estimators using constrained dynamical optimization techniques. The underlying regression function is approximated by a B-spline of an arbitrary degree subject to the first-order difference penalty. The optimality conditions for ...
متن کاملConvergence of Proximal-Like Algorithms
We analyze proximal methods based on entropy-like distances for the minimization of convex functions subject to nonnegativity constraints. We prove global convergence results for the methods with approximate minimization steps and an ergodic convergence result for the case of finding a zero of a maximal monotone operator. We also consider linearly constrained convex problems and establish a qua...
متن کاملW-convergence of the proximal point algorithm in complete CAT(0) metric spaces
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
متن کاملA New Merit Function and an Sqp Method for Non-strictly Monotone Variational Inequalities
Merit functions utilized to monitor the convergence of sequential quadratic programming (SQP) methods for nonlinear programs and variational inequality problems have in common that they include a penalty function for the explicit constraints, the value of the penalty parameter for which is subject to the requirement of being large enough compared to estimates of the optimal Lagrange multipliers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996